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Abstract We shldy the static as well as the glassy or dynamical transition in lhe meamfield 
p-state Potts glass. By numerical solution of the saddle-point equations we investigate the static 
and dynamical transitions for all values of p in the non-$eermrbative regime p > 4. The static 
and dynamical Edwards-Anderson parameter increase with p logarithmically. This malies the 
glassy msi t ion  temperarure lie very close to the static one. We wmpare the main predictions 
of the theory with numerical simulations. 

1. Introduction 

This paper is devoted to the study of the glassy properties of the mean-field Potts glass. 
Very recently there have been new developments in spin-glass theory concerning frustrated 
mean-field models without explicit disorder 11-71. It has been shown that these systems do 
have a glassy transition temperature below which thermal fluctuations are very small and 
dynamical relaxations are very slow. Even though these results are not new in the context 
of disordered systems it is most interesting to know that non-disordered models also share 
these properties. 

The purpose of this paper is to study the glassy behaviour of a disordered spin glass. 
In general, these systems have a static transition TRSS where replica symmetry is broken. 
The breaking of the replica symmetry can occur in two ways. There can be a continuous 
breaking pattern (as happens in the case of the Shemngton-Kirkpattick (SK) model [SI) or 
thergcan be a one-step breaking of the replica symmetry (as happens in p-spin models with 
p 7 2 191). Also one can find intermediate phases where there is a pattern with one step of 
breaking superimposed on a region with continuous breaking (as happens in p-spin models 
or Potts models at low enough temperatures). The breaking pattern is fully described by 
the order parameter q ( x )  which is a function defined in the interval (0,l)  [lo]. 

The study of a disordered model with a discontinuous transition in the order parameter 
is of particular interest. These systems generally have a temperature To where a dynamic 
instability appears. This temperature is called the glass temperature and is higher than 
the transition TWS where the replica symmetry breaks. The first observation of this type 
was due to Kirkpatrick and Thirumalai, who solved the off-equilibrium dynamics for the 
p-spin model above the glass temperature [ 111. Subsequently, Kirkpatrick, Thirumalai and 
Wolynes studied the Potts mean-field glass, &aching similar conclusions j12.131. Similar 

0305470/95/113025+17$19.50 @ 1995 IOP Publishing Ltd 3025 



3026 

results were obtained in the case of the p-spin spherical spin glass by Crisanti et al 1141. 
Below the glass transition it has been shown by Cugliandolo and Kurchan [15] that the 
energy of the p-spin spherical spin-glass model in the low-temperature phase is higher than 
that predicted by the statics. For times larger than a time scale (which diverges exponentially 
with the size of the system) it is expected that the energy of the system will relax to its 
equilibrium value. How fast this time scale grows with the size of the system depends on 
particular features of the glass transition like the discontinuity in the Edwards-Anderson 
parameter q ~ .  

In order to investigate the glassy behaviour of a disordered model we have decided 
to study the infinite-ranged Potts glass model. The reason is threefold. First, in the Potts 
model p is a tunning parameter for the magnitude of the static and the dynamical transition. 
Second, the Potts model is amenable of numerical tests while other models l i e  the p -  
spin model (king or spherical) are time consuming which makes numerical simulations 
practically impossible for p > 3. The situation is different in the case of the random 
orthogonal model [2] where the replica theory predicts the existence of a glassy phase in 
good agreement with the numerical simulations. Third, the Potts glass model lacks the 
reflection symmetry ai 4 -ai of some other models. This makes it more similar to real 
structural glasses. 

In this paper we completely solve the replica equations for the Potts model for an 
arbitrary number of states p. We will be able to compute exactly the static and the dynamical 
transition and we will compare the predictions with numerical simulations. 

We will see that a complete dynamical freezing never takes place, even for very large 
values of p .  For generic p there is always a residual entropy at the static transition T ~ B .  
As shown by Gross et ai 1161 in the limit p 4 cc the statics of the Potts model converges 
to the random energy model (REM) 117,281. We will see that the convergence of the 
statics of the Potts glass model to the REM when p + cc is very slow (logarithmic in p). 
Surprisingly, we will see that also the dynamics converges logarithmically with p to a fully 
frozen dynamics but even more slowly than does the statics. For all practical purposes, 
i.e. for reasonable values of p ,  the system is never fully frozen. In addition we will see 
that, for p > 4, the dynamical transition (also called the glass transition) is always very 
close to the static transition. This makes the glassy behaviour of the Potts model very 
different from other models with a discontinuous transition in the order parameter like, for 
instance, the p-spin interaction king spin-glass model where the static and the dynamic 
Edwards-Anderson order parameter increase relatively fast with p. 

This partial freezing which occurs for the mean-field Potts glass has to be compared 
with deterministic models [1,6,5] where q~ - 1. In those cases there is no quenched 
disorder and frustration is purely dynamical and self-induced by the dynamical process [3]. 

The paper is organized as follows. In section 2 we introduce the model and we write 
closed expressions for the free energy at first order of replica symmetry breaking. In 
section 3 we solve numerically the static equations at one step of replica symmetry breaking 
and we determine the static and the dynamical transition. Section 4 compares the predictions 
with the numerical simulations. Finally we present our conclusions. 

E De Santis et a1 

2. Static replica equations for the Potts glass 

The Potts glass model is defined by the random Hamiltonian 

1-1 = -P J i j b ,  
i c j  
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where p is the number of states and the variables U can take the values 0, 1 ,  . . . , p - 1. 
The sum is extended over all $ N ( N  - 1) pairs in the lattice and N is the number of sites. 
The couplings Jj, are randomly distributed with mean $ and variance 4. In order to solve 
this random model we apply the replica method in order to compute the free energy f 

log 7 pf = lim - 
M O  N n  

where n is the number of replicas and the overline means average over the disorder. 
Performing the usual transformations (avergaging over the disorder, decoupling the sites 
and introducing auxiliary fields) and using the identity (a ,  b = 1 ,  . . . , n are replica indices) 

P-’ 

“%,” = sc:rsc;, (3) 
,dl 

one gets the following resultt 
- z; = / &,,: d Q z  ,-A’ A[m.QI (4) 

where r, s = 0, . . . , p -  1 denote the Potts states. The function A [ m ,  Q] is given by [ 19.201 

with 

where the mean (...) is evaluated over the effective Hamiltonian in (6).  The order 
parameters m and Q satisfy the constraints 

Q z = O .  

In the particular case p = 2 with Q:$ = -Qub. QZ = Q.6 one recovers the solution 
for the SK model [8 ] .  It can be shown that ferromagnetic order is always preferred for 
p t 2 for sufficiently low temperatures. The temperature TF below which ferromagnetic 
order appearst is given by the following condition [20]: bo+ -& P - 2  - - 1 .  

TF 
t Alternatively one can use the simplex represenlation [IS]. 
t This transition is from a paramagnet to a collinear ferromagnet. 
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Even though this formula for TF is implicit in the formulae of [20] (equation (17) therein) 
it is not explicitly noted there. In the special case JO = 0 the ferromagnetic transition appears 
below T = 1 for p < 4 and above that temperature for p > 4. Our main interest in this 
paper is the study of the spin-glass transition. In order not to observe the ferromagnetic 
transition it will be necessary to add an antiferromagnetic coupling in the case p > 4. This 
will be discussed further at the end of this section. The spin-glass solution is given by 
m:. 0. This means that all different p states are equally populated. The saddle-point 
equations are independent of JO and the replica symmetric solution in this case is given by 

rzE - 
Q.b - - q  
QS = q ( p  - 1 ) .  

Substituting this result in (7) we obtain 

The high-temperature result q = 0 gives the free energy f, the internal energy U and 
the entmpy s: 

Because the entropy has to be positive one finds that the replica symmetric solution 
breaks down, at least above or equal to 

It has heen shown [21] that there is a continuous phase bansition at T, = 1 for p < 6 
which is unstable for p 2. This transition ceases to exist above p = 6 and cannot be 
found within the replica symmetric hypothesis. 

It is necessary to break the replica symmetry. By expanding the free energy (5) close to 
Tc = I, Gross et al [ 161 found two different regimes according to the value of p .  In both 
cases the correct solution is given by one step of breaking. In the region 2.8 < p < 4 the 
transition is continuous. The breaking parameter m is f ( p  - 2 )  at the transition temperature 
Tc = 1. At sufficiently low temperatures the entropy of the one-step solution becomes 
negative and a continuous breaking is then necessary. In the regime p > 4 the transition is 
discontihuous in Q and the breakpoint parameter m is equal to 1 at the transition temperature 
T, > I. Cwilich and Kirkpatrick 1221 have shown that this one step solution is always stable 
for p > p" = 2.82 below but close to T,. 

At the first order of replica symmetry breaking we subdivide the n replicas into 2 
blocks. Each block contains m replicas [23]. The order parameter QZ takes a certain value 
when both replicas a,  b belong to the same subblock and it is zero when both indices belong 
to two different subblock. More explicitly, if K denotes a subblock, we impose 

(15) 
QiT = -q (a, b E K) Q g  = 0 (otherwise) 
Q; = - q ( p  - 1) (a, b E K) QZ = 0 (otherwise). 
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We obtain the result 

The corresponding saddlepoint equations are 

which determine the correct solution. Since we are interested in the glassy behaviour of 
the Potts model our approach will be to numerically solve the equation (17). This is the 
purpose of the next section. 

Some comments are in order regarding the existence of the ferromagnetic transition. We 
said previously that the system orders ferromagnetically at sufficiently low temperatures. 
The temperature TF below which the system orders ferromagnetically is smaller than 1 for 
p < 4. Also for p c 4 the spin-glass transition appears at TWB = 1. This means that 
in the regime p < 4 the spin-glass transition occurs at a temperature TUB larger than the 
temperature T' at which ferromagnetic order sets in. On the other hand, for p > 4 the 
spin-glass transition T& occurs at a temperature greater than 1 but smaller than TF. In 
order that TF < T R S ~  it is necessary to introduce a negative value for Jo. In our numerical 
simulations we have chosen Jo = 4(4 - p )  in the case p z 4 and Jo = 0 for p < 4. 
In this way the spin-glass transition occurs at a larger temperature than the ferromagnetic 
ordering. Now, let us suppose that we perform a dynamical process of the system in which 
the temperature is slowly decreased starting from the high-temperature phase. We think that, 
once the system has entered the metastable glassy phase, then it remains trapped in this 
phase for a time which diverges exponentially with the size of the system. Consequently, 
the system is unable to see the ferromagnetic transition which occurs at a lower temperature. 
This is in agreement with our numerical results where we do not find evidence for strong 
ferromagnetic ordering when the transition TWS from a paramagnet to a spin glass occurs 
at a higher temperature than the ferromagnetic TF. Only the case p = 4 could be a little 
tricky because the estimate for the ferromagnetic transition TE and the spin-glass transition 
coincide. but even in this case we have not observed in the numerical simulations a strong 
magnetic ordering. 

We should note that there are few works devoted to the study of the ferromagnetic 
behaviour in the mean-field Potts glass and we think it would be very interesting to 
investigate it. 

3. The static and the dynamical transition 

In this section we are going to solve (16) numerically. As is usual in spin-glass theory 
we have to maximize the free energy as a function of q and m. We face the problem of 
computing the p-dimensional integral 

Because the solution of the replica equations involve a maximization in the (q, m) plane 
it is essential to compute I with relatively high precision. We have been able to reduce the 
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p-dimensional integral to a two-dimensional integral. We use the identity, 

E De Sanfis et a1 

where r(x)  is the Gamma function that is well defined for x > 0, i.e. m < 1, as is the case 
once the analytic continuation n + 0 (n is the number of replicas) has been done. 

We decompose the integrand in (18) as a product of two terms A * A"'-' with A given 
by 

Applying (19) and using the fact that the integrand in (18) is invariant under permutation 
of the indices we get the final result 

where w ( x )  is given by 

The integral over x is well defined and free of divergences. However one has to be 
careful evaluating the integrand close to x = 0. We have been able to maximize the free 
energy and completely solve the static replica equations up to p = 40. 

T 1 

Figure 1. The one-step breaking parameter q as a 
function of the tempemure. From lefl to right: p = 
3,s. 7. 10, U). 40, 

Figure 2. The one-step breakiag parameter m as a 
function of tk femporaNre. The different lines thaf 
intersect the upper horizontal axis m = I correspond 
from left to righf to: p = 3. S. 7, 10.20.40. 

The results are shown in figures 1 and 2 where we plot the variational parameters q 
and m as a function of 2'. We plot the solutions for the cases, p = 3,5,7,10,20,40. The 
transition temperature also grows with p .  The solution of the integral (21) presents some 
problems of precision at very low temperatures and also close to the'transition temperature, 
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where it is difficult to determine the value of the discontinuity precisely. A more precise 
way of computing the critical temperature and the discontinuous jump of q will be presented 
below. It is interesting to note how slow the convergence to the random energy model is 
as p increases. When p increases the value of q at the transition point grows very slowly. 
In fact, in the limit p + 00, the value of q converges to 1 and the entropy is zero at 
the transition temperature. Using (14) we obtain that the critical temperature grows as To 
of (14). This result was already noted in 1161. 

We have already observed that at very low temperatures the entropy of the one-step 
solution becomes negative (of order lo-’). Continuous breaking is necessary (as noted 
in [16]) but we have not studied this type of solution. It is not clear to us if any effect of 
this new transition could be observable in a numerical simulation. 

We now want to show a more precise computation of the critical temperature T R ~ B  and 
the glass transition TG. From the dynamical point of view an instability in the dynamical 
equations appears at a temperature TG above the static transition TRSB [13]. Using the‘ 
static approach, this dynamical temperature TG can be determined computing the smallest 
eigenvalue in the stability manix. The vanishing at To of this eigenvalue, sometimes called 
the replicon, corresponds to the marginality condition 1261. In principle, this condition 
correctly determines the dynamical or glass transition. Anyway it is not clear if it is the 
correct description of the dynamical behaviour in the low-temperature phase. This condition 
has been solved numerically in the random orthoghonal model and it has been shown that it 
correctly describes the dynamical energy below the glass transition for temperatures that are 
not too low [2]. It also correctly describes the glass transition in the case of deterministic 
models. The interested reader is referred to [Z] for more details. In order to determine the 
glass transition for the Potts case we should compute the stability matrix of the problem. 
This is an involved task (which has been done by Cwilich and Kirkpanick close to T, [22]) 
and we will follow a different strategy (already noted by Cwilich and Kirkpabick but not 
fully explained). It can be shown that in the limit m + 1 the replicon eigenvalue coincides 
with the longitudinal eigenvalue. This result can be shown using the exact expressions 
for the spectrum of the stability matrix which have been reported in the literature at first 
order of replica symmetry breaking [U]. From the stability analysis results of Cwilich and 
Kirkpatrick this can also be directly tested in the Potts glass case. Consequently, in order 
to determine the dynamical transition, it is sufficient to impose the marginality condition 
for the longitudinal fluctuations. 

We expand the free energy (16) around m = 1 

Bf = $’(1 - P) - log(p) + (m - 1) ($B’(P - l)q2 + & m P  + 1) + k ( P )  - I*) 
(23) 

where the integral I2 is given by 

For m = 1 equation (23) reduces to the high-temperature free energy which is 
independent of q .  More generally, we can write the free energy as 

f = fo + (m - I ) f t  + 0 ((m - 1)’) (25) 

where fo is independent of q. This general expansion locates the static and the dynamic 
transition. For the static transition we look €or a temperature at which there is a solution 
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qmB which satisfies 

E De S m i s  er a1 

( f t )q=qRss = 0 
For the dynamical transition the stability is marginal and the second derivative of f 

respect to q vanishes, 

. The last equations corresponds to the case where an extremal solution of (23) with 
qo # 0 dissappem. It is then clear that the dynamical transition temperature is always 
higher than the static one. We have solved these equations for different values of p. Now 
we face the problem of computing the p-dimensional integral I,. It can be reduced to a 
two-dimensional integral using the representation 

log(l+ A) = -evX(] -e-&) , r : 
and taking 

we obtain the result 

with the same function w as given in (22). We have solved equations (26) and (27) for 
different values of p. Our results are summarized in table 1. We find for each value of p two 
temperatures. One is TRSB and corresponds to the static transition with the discontinuous 
jump qmB. The other one is TG and corresponds to the dynamical transition with the 
discontinuous jump 46. Our results for the' static transition are in  agreement with those 
found with the previous analysis using the maximization procedure for the free energy. 
This is a check of our procedures. Moreover, this analysis provides a much more precise 
determination of the values of qR.$B, qG and the transition temperatures. 

The results we have found are also in agreement with those reported by Cwilich and 
Kirkpatrick, the only difference is that all their computations are perturbative whereas ours 
are exact. As was obtained in [I21 and 1221, one finds that qG/qmB = 2 for p close 
to 4. Looking at table 1 the reader can observe that the ratio qc/quB stays so close to 
314, even for large values of p .  that one is tempted to conclude that this is exact at all 
orders in perturbation theory. Our numerical precision for solving equations (26),(27) is 
good enough to exclude this possibility. From the results shown in the Table 1 it is clear 
that convergence to the p + 03 limit is very slow. Fortunately, our numerical program 
which solves the equations (26) and (27) is accurate enough to show this slow convergence 
explicitly even for exponentially large values of p .  We have solved the full equations up 
to p = lo6. The results for qmB and qc as a function of I / l o g ( p )  are shown in figure 3. 

Furthermore, in the Potts case the ratio To/ TRsB grows very slowly, with p being always 
smaller than 1.13 up to p = 106. The proximity of the temperatures TG and TRSB makes 



Mean$& Pons glass 3033 

Table 1. Solutions to equations (26) and (27) for different values of p (see text for derails). 

P TRSB ~ R S B  TO 40 TGITRSB qG/qRSS 

- - 3 1 0 I 0 

4 1 0 I 0 
5 1.0091 0.130 1.0100 0.0985 1.001 0.757 

7 1.053 0.308 1.058 0.231 1.004 0.75 
10 1,1312 0.452 1.142 0.328 1.009 0.725 
20 1.364 0.641 1.393 0.468 1.02 0.73 
40 1.711 0.752 1.765 0.551 1.03 0.732 

100 2.388 0.838 2.496 0.633 1.045 0.755 
1 o3 6.075 0.931 6.51 0.721 1.07 0.774 
10' 16.54 0.966 18.05 0.769 I S 9 1  0.796 

105 6.69 0.981 51.64 0.802 1.1 0.817 

16 134.65 0.989 150.5 0.835 1.12 0.844 

- - 

I 0,2 P 

. Figure 3. The static and the dynamic Edwards- 
Anderson parameter 85 a'function of I/log(p). They 

0 0,2 0.4 0.6 increase logarithmically with p .  The dots are for the 
staric value, the crosses for the dynamical one. 

t 
0' 

l / l O d P )  

it difficult to discem one from the other in numerical simulations. This proximity of the 
static and the dynamic transition temperatures is probably related to the small value of the 
dynamical order parameter qG for large values of p .  From these results we expect the glassy 
behaviour of the Potts glass to be very different from other disordered spin-glass models. 

For instance, in the case of the p-spin interaction spin-glass model we have also solved 
the equations corresponding to (26) and (27). We have found that both the static order 
parameter q R s B  and the dynamical q~ converge to 1 in the limit p + 00 much faster than 
the Potts case, in agreement with theoretical expansions around the p -+ 00 limit 17-51, For 
p = 3 (the smallest value of p compatible with a discontinuous transition) one finds in the 
p-spin model that 

For this particular model, the ratio q G / q R S B  tends to 1 in the limit p + 00 and the 
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ratio TG/TR~B increases with p much faster than the Potts model does (for p = I O  we find 
qo/qss  -Z 0.97 and TG/TRSB N 1.38) 

In the next section we shall compare all these predictions with Monte Carlo numerical 
simulations. We will see that the Pods glass transition is always present but it is far 
from being a complete thermodynamic freezing as happens in models where frustration is 
stronger (see, for instance the random orthogonal model [2]). Before showing our Monte 
Carlo results for the spin-glass transition it will be interesting to present some results on 
the ferromagnetic ordering that takes place in the Potts glass. 

E De Santis er a1 

4. Monte Carlo tests of the glass transition 

In order to simulate the Potts glass we have considered the Hamiltonian 

The Ji j  are distributed with mean Jo/N and variance equal to A. The only difference 
between the Hamiltonians of (32) and (1) is aconstant which vanishes in the thermodynamic 
limit. We have chosen this second version because we have found that the addition of the 
constant strongly reduces the sample to sample fluctuations in the high-T region. This 
should not make too much difference for small values of p but is crucial for large values 
of p. All simulations implement the Metropolis algorithm with random updating. 

The results we present in the next subsections correspond to annealings in which we 
compute the main thermodynamic observables. Starting from the high-temperature region 
the temperature is progressively decreased. Data are collected at each temperature and 
the time we stay at each temperature is the same for all temperatures during the cooling 
procedure. We have computed the internal energy, the magnetization of the different p- 
states and the associated dissipative quantities, i.e. the specific heat and the p different 
magnetic susceptibilities corresponding to each one of the p-states. The specific heat and 
the magnetic susceptibility of one of the p states is computed by measuring the fluctuations 
of the internal energy and the magnetization (see (7)) respectively. Typically we performed 
several thousands of Monte Carlo sweeps at each temperature. We draw to the attention of 
the reader that our results are dependent on the time schedule of the annealing only for very 
large values of p (i.e. where the finite-size corrections are large). Otherwise, one cannot 
observe a sensible dependence of the different quantities on the time the system stays at 
each temperature during the cooling procedure. At least, this dependence is of the same 
order as that arising from the sample-to-sample fluctuation. We will mainly show plots for 
the internal energy as a function of temperature. In all cases the Monte Carlo error bars are 
very small (relative error less than 10%) and will not be shown explicitly. 

4.1. Ferromagnetic ordering with JO = 0 

When JO = 0 the system orders ferromagnetically. We have investigated the ferromagnetic 
ordering for p = 10. This value of p is in the regime (p  > 4) where the ferromagnetic 
transition is expected to appear at a temperature higher than the spin-glass transition. 
From (9) we expect the ferromagnetic transition to occur at TF = 2. Figure 4 shows 
the internal energy as a function of the temperature compared to the energy of the spin- 
glass phase and the high-temperature result (13) for a large size N = 1000. The energy is 
lower than that corresponding to the spin-glass solution. Looking at figure 4 we observe 
a small jump of the energy at T close to TF = 2 and that the energy is lower than the 
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, 

Figure 4. Energy versus temperature for the case 
p = IO with 30 = 0 and Gaussian couplings. The 
continuous line corresponds to fhe one step spin-glass 
solution and lhe dashed line is lhe high-T result ?be 

0 2 4 6 femmagnetic transition is at TF = 2. Simulation results 
are for one sample and N = 1000. 

-5  

, , , , , , , I  
T 

high-T result already close but above TF = 2. This is because above TF = 2 some states 
begin to be strongly magnetized and th is makes the energy to decrease. The specific heat 
also shows a peak at that temperature. This suggest the transition is first order, a natural 
result for a ferromagnetic transition in a'Potts model which is in agreement with the mean- 
field equations (see [ZO]). To stregthen this conclusion one should perform a finite-size 
scaling analysis for different sizes in order to show that there is a finite jump in some 
dissipative magnitudes like the specific beat and the magnetic susceptibility. As a test, 
we have measured the magnetic susceptibility per site averaged over the different p = 10 
states for different system sizes N = 50,100,500,1000. We have not seen evidence for a 
divergence as we expect for a first order transition but a discontinuity. 

It is interesting to note we have observed the emergence of further peaks at lower 
temperatures below T, in the magnetic susceptibility. We interpret them as the emergence 
of new states which start to be macroscopically populated. These could be a sign of new 
transitions in the ferromagnetic phase but it is difficult to reach definite conclusions in this 
low-T regime. 

We have also studied the zero-temperature ground state following a steepest descent pro- 
cedure. We have searched for stable configurations against one-spin flip operations. Starting 
from a random initial configuration we sequentially move on the lattice selecting (among the 
p - 1 possibilities) the state of the variable U(;) which releases the largest amount of energy. 
In this way the system reaches a metastable state that should be magnetized if the ground 
state is ferromagnetic. We have repeated this procedure several times saving the energy and 
the magnetization of the final configurations. Figures 5 and 6 show the distribution proba- 
bility of the energies and the magnetization (7) of the stable configurations against one-spin 
flip movings for the same model .lo = 0, p = 10 with N = 100. Figure 5 shows that the 
energies of this class of metastable states are distributed very similarly to the form predicted 
for the SK model [29]. This is a consequence of the glassy nature of the ferromagnetic phase. 
We have verified that the minimum energy found by the algorithm is higher than the energy 
obtained doing a slow cooling starting from the high-temperature phase. This is a proof 
of the glassy nature of this phase. The ferromagnetic nature (but glassy) of the phase is 
explicitly shown in figure 6. The value of m ranges from m = -1 to m = p - 1 = 9 and the 
magnetization histogram shows a broad dishibution between m = -1 and m = 2. The peak 
at m = - 1 is consequence of the fact that only some of the p = 10 states are populated. 
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Figure 5. Probability disbibudon of the energy of the 
ground states for the case p = 10 and l a  = 0 and 
N = 100. 

Figure 6. Probability distribution of the magnetization 
associated with the zero.lemperature metast&le states. 
The singuiaxity at m = -1  means that only some states 
are populated. Panmeters are as in figure 6. 

4.2. The continuous transition (p = 3) 

The case p = 3 is indeed very similar to the SK model (p  = 2). Because the transition 
is continuous the system relaxes very close to the true energy. As mentioned in section 2, 
it now suffices to take Jo = 0. In this way the ferromagnetic transition lies well below 
the spin-glass transition. In fact, we have not observed any tendency of the system to be 
magnetized at low temperatures. Figure 7 shows the internal energy as a function of the 
temperature along with the one-step solution and the high-temperature result (13). Below 
the critical temperature TRss = 1 the data departs from the prediction. Precisely at T = 1 
the heat and the magnetic susceptibility have a cusp. Similar results for the internal energy 
were obtained for p = 4. 

4.3. The discontinuous transition 

To investigate the discontinuous spin-glass transition we have chosen Jo = f (4  - p) for 
p > 4. In this way the system first enters the metastable glassy phase in which there is no 
ferromagnetic ordering. In all our simulations we have observed that this is what happens 
and that there is no tendency for the ferromagnetic domains to grow as the temperature is 
decreased. At high temperatures the size of the domains (i.e. the fraction of sites of the 
lattice %*hich are in the same state) is l j p .  This is true down to very low temperatures 
where in the worst case the size of the domains increase approximately ten percent. To 
make any tendency to the ferromagnetic ordering completely dissapear we can increase 
the intensity of the antiferromagnetic coupling. This is only possible if p is not too large 
because otherwise finite-size corrections (an consequently finite-time effects) considerably 
increase. In the regime of large values of p one can neglect finite-size effects only if 
p << N. This is a problem of the simulations in the largep regime. We follow the criteria 
for dividing our results for the discontinuous transition in two parts, the small and large 
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Figure 7. Energy versus temperature in the case p = 3, 
Jo = 0. The continuous line is the one-step solution. 
The dashed tine is the high-T result. The transition 
temperature is Tnss = TG = 1. The full dots are for 
one sample and N = 2000. 

Flgnre 8. Energy versus tempenme in the w e  
p = IO. Jo = :3. The continuous line is the one- 
step solution. The dashed tine is the high-T result. The 
full dots are simulation results for N = 1000. 

p > 4-regimes (corresponding to the regions where the finite-size corrections are expected 
to be small and large, respectively). It is important to note that the true distinction between 
the small and the large p-regime is defined by the ratio TG/TRSB or the Edwards-Anderson 
parameter 90. Both parameters increase logarithmically with p. For the reasonable values 
of p we are able to simulate we cannot expect to observe, in the Potts glass, the region 
where there is a nitid glass transition. Consequently, in the next results we present, the 
dynamical energy departs from the high-T behaviour at a temperature higher than the glass 
transition temperature. This occurs because the static and the glass transition temperatures 
are very close to each other. We will return to this point in the conclusion. 

4.3.1. The small p > 4-regime. We have measured the internal energy as a function of 
the temperature for the cases p = 5,lO using a binary distribution of couplings. In this 
regime we have observed that the results do not vary too much depending with the time 
schedule of the cooling procedure. Comparison with theory is shown in figure 8 for the 
case p = 10. For these small values of p the dynamical transition practically coincides with 
the static one. Comparing to the previous continuous case p = 3 we see that the energy 
in the low T region for p = 10 remains slightly above the expected theoretical one. This 
is the glassy phase where the system remains trapped making excursions between several 
metastable states of similar energy but without reaching the static phase of slightly lower 
free energy. The difference in free energy (and energy) between the static phase and the 
metastable glassy phase is small for p = 5 and increases with p. It is important to note that 
the energy we are measuring is purely dynamical. For p < 4 this difference of free energy 
does not exist. This does not mean that the system relaxes to the hue ground-state energy 
in an annealing process (see figure 7). In fact, for a continuous transition we expect the 
system should relax to the static free energy at a finite temperature very slowly (as a power 
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law) very similarly to the relaxation of the remanent energy or the remanent magnetisation 
in the SK model [30,311. For a discontinuous transition the relaxation of the free energy 
takes place also very slowly but to a dynamical value higher than that predicted by the static 
approach. We have also computed the specific heat and the magnetic susceptibility. They 
display a cusp located approximately at the static transition (and, because of its proximity, 
near the dynamical transition also). 
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Figure 9. Energy versus temperature in the case 
p = 20, Jo = -8. The continuous line is the one- 
step solution. The dashed line is the high-7 result. The 
crosses and the full doe correspond to the Gaussian 
model with N = 2000 and two cooling procedures 
(the simulations with cmsses are IO times iargcr in 
simulation time than the dots). 

Figure 10. Energy versus temperature in the case 
p = 40. 30 = -18. The continuous line is the one- 
step solution. The dashed line is Ule high-T m u I L  The 
crosses and the full squares correspond to the Gaussian 
model with N = 1000 and two different samples. 

4.3.2. The largep 4-regime. Finite-size corrections are important and one has to simulate 
large sizes in order to reduce these effects. We present the results of annealing5 for 
p = 20,4Q in figures 9 and 10. We decided to simulate the Gaussian Jij model instead of 
the binary &J one in order to reduce finite-size corrections. As p increases the finite-time 
effects also increase and we have found a clear dependence of our results on the cooling 
procedure. Figure 10 shows simulation results for p = 20 for N = 2000 and two different 
cooling procedures. The simulation results show a drift with the annealing time. For 
p = 40 (figure 10) we show simulations of two different sample realizations. Since sample 
to sample fluctuations increase with p, the relative magnitude of the fluctuations of figure 
10 should be considered as an upper bound for the previous figures with smaller values of 
p .  Also finitetime effects are large for p = 40. 

Glassy effects are slightly more pronounced in the large p-regime, the dynamical energy 
being larger than the static one. All dissipative quantities show a cusp very close to the 
dynamical transition. Even though the static and the glass transition are very close one to 
the other the fact that the energy of the sytem is much higher than the static one (when 
approaching the glass transition) is a proof that the system has entered the glassy phase. 
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5. Conclusions 

We have studied the glassy behaviour of the mean-field Potts glass. We have been able 
to solve numerically the static equations at first order of replica symmehy breaking. We 
have also introduced a simple method, already observed by Cwilich and Kirkpatrick [22], 
which allows a full computation of the static and the dynamical or glass transition and the 
associated Edwards-Anderson parameter. 

We have computed numerically the parameters of the transition for different values of 
p .  We observe that the Edwards-Anderson parameter at the glass transition qG increases 
logarithmically with p .  The ratio of the static and glass temperature is smaller than 1.13 
up to p = lo6. The situation is very different from other disordered models such as the 
p-spin Ising model. For that model the dynamic transition temperature is much higher than 
the static one. 

All our numerical results seem to indicate that the dynamical transition takes place at a 
temperature higher than that predicted by the theory. But this is due to the proximity of the 
dynamical transition to the static one. If the dynamical transition temperature were much 
larger than the static one then we would expect that the energy departs from the high-T 
result precisely at the dynamical temperature. We would expect this if we were able to 
simulate the Potts model with exponentially large p values. This is indeed the situation one 
observes in low autocorrelation models [1,3,7] , in the random orthogonal model [2, 61 and 
discrete matrix models [5] . 

For large values of p ( l i e  p = 20,40) we have observed a clear dependence on the 
time spent during the cooling procedure. The origin of the finite-time effects is related 
to the finite-size effects we also observe in this regime. We expect that simulations for 
larger sizes should give results nearly independent of the annealing time leaving only a 
small thermalization time effect close to the glass transition where critical effects begin to 
be important. We interpret this effect in the following scenario. 

There are two characteristic relaxation times in the system. The first time rG diverges 
as the dynamical transition is approached, the other one rs diverges as the static transition 
is approached. Because TG is so close to Twa the systems feels the static low-temperature 
phase very close to the dynamical transition temperature. Above the glass temperature we 
have 70 - r, which is certainly large if the system is entering the low-temperature phase. 
Because the characteristic time scale rG increases very fast only very close to the dynamical 
transition temperature then we expect that close to TG the correlation time 5, will set the 
characteristic time scale above which our simulation results should be time independent. 
Only for times larger than r, (which we are not able to reach in our simulations) the system 
would behave as dynamics predicts. It is then clear that all our simulation results are smeared 
by the static relaxation time r,. In the other models mentioned in the previous paragraph 
the dynamical transition temperature is much larger than the static one. Approaching the 
dynamical transition the system is in the high-temperature phase where the relaxation time 
is very small. Consequently, ro grows very much only very close to TG (very probably 
diverges like rG - (T  - T G ) - ~  where y = 2 the typical value for mean-field models [7]) 
and the system departs from the high-T result very close to that temperature. 

Because the Potts model is only partially frozen at the glass transition this is a model 
appropiate for study of the dynamics in the metastable glassy phase. We expect the mean- 
field Potts glass model to resemble real structural glasses where activated transport at the 
glass transition is not completely suppressed due to droplet excitations [12]. Other mean- 
field models without disorder freeze quickly at the glass transition and relaxation processes 
are strongly suppressed. In this case, much more involved numerical techniques are needed 
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in order to allow the system to change state and relax [32]. 

ferromagnetic ordering remains an interesting open problem. 
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We would also like to emphasize that research into glassy behaviour in the presence of 
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